General constraint preconditioning iteration method for singular saddle-point problems
نویسندگان
چکیده
For the singular saddle-point problems with nonsymmetric positive definite (1, 1) block, we present a general constraint preconditioning (GCP) iteration method based on a singular constraint preconditioner. Using the properties of the Moore-Penrose inverse, the convergence properties of the GCP iteration method are studied. In particular, for each of the two different choices of the (1, 1) block of the singular constraint preconditioner, a detailed convergence condition is derived by analyzing the spectrum of the iteration matrix. Numerical experiments are used to illustrate the theoretical results and examine the effectiveness of the GCP iteration method. Moreover, the preconditioning effects of the singular constraint preconditioner for restarted generalized minimum residual (GMRES) and quasi-minimal residual (QMR) methods are also tested. MSC: 65F08; 65F10; 65F20
منابع مشابه
Augmentation Preconditioning for Saddle Point Systems Arising from Interior Point Methods
We investigate a preconditioning technique applied to the problem of solving linear systems arising from primal-dual interior point algorithms in linear and quadratic programming. The preconditioner has the attractive property of improved eigenvalue clustering with increased ill-conditioning of the (1, 1) block of the saddle point matrix. We demonstrate performance of the preconditioner on prob...
متن کاملSemi-convergence of an Alternating-direction Iterative Method for Singular Saddle Point Problems
For large-scale sparse saddle point problems, Peng and Li [12] have recently proposed a new alternating-direction iterative method for solving nonsingular saddle point problems, which is more competitive (in terms of iteration steps and CPU time) than some classical iterative methods such as Uzawa-type and HSS (Hermitian skew splitting) methods. In this paper, we further study this method when ...
متن کاملApplication of variational iteration method for solving singular two point boundary value problems
In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem w...
متن کاملPerformance Comparison of Relaxation Methods with Singular and Nonsingular Preconditioners for Singular Saddle Point Problems
In this paper, we first review the PU and Uzawa-SAOR relaxation methods with singular or nonsingular preconditioning matrices for solving singular saddle point problems, and then we provide numerical experiments to compare performance results of the relaxation iterative methods using nonsingular preconditioners with those using singular preconditioners. Mathematics Subject Classification: 65F10...
متن کاملSome Preconditioning Techniques for Saddle Point Problems
Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 282 شماره
صفحات -
تاریخ انتشار 2015